High Efficiency Quantum Well Thermoelectrics for Waste Heat Power Generation Milliwatts to Kilowatts of Power

> John C. Bass Norbert Elsner Saeid Ghamaty Velimir Jovanovic Daniel Krommenhoek

> Hi-Z Technology, Inc. San Diego, CA 92126 (858) 695-6660

Measured Power Factor Quantum well is Significantly Better than Bi₂Te₃

Quantum Well & Substrate Thermal k

Kapton substrate reduces thermal loss to a small fraction

- Published data used to generate chart
 - Bulk properties
- QW film is expected at 1/3 bulk thermal k from literature
- Substrate could represent large thermal loss
 - 5 micron poly Si is
 ~50% loss with 11
 micron QW film
- Kapton at 25 microns is 3% loss in efficiency with 11 micron QW film

Quantum Effect in B₄C/B₉C & Si/SiGe

Quantum well ZT >3x higher than other current materials

Quantum Well Couple Efficiency Highest Measured Thermoelectric Efficiency

- Measured Quantum Well Couple Efficiency Versus temperature at a T_C = 70°C
- Over 100 Data Points Were Obtained – Nleg Si/SiGe, P-leg B₄C/B₉C
- Both Films 11 µm Thick and Deposited on a 5 µm Thick Si Substrate

Thermal Stability of Quantum Well Couple N-type Si/SiGe and P-type B₄C/B₉C

- There are no changes in Seebeck (α) and Electrical Resistivity (ρ) after 1400 hours (July 2005)
- Power Factor (α^2/ρ) shown as P/P₀

QW Films Parallel or Perpendicular to Current Flow

Hi-Z uses parallel approach to give higher Zs

Two Couples with Pressure Contacts

Approach successfully used in PbTe TE Generator

- Surfaces must be free of oxides
- Connect quantum well film to metal
- Thermal expansion must be accommodated
 Thermal spray technique
- Recent data fabrication of Si/Si_{0.8}Ge_{0.2} surfaces metallized with molybdenum
 - Life tested to 1400 hours

Efficiency Depends Strongly on Substrate

Efficiency improves and cost is greatly reduced with Kapton substrate

Si substrate is 80% of materials cost and large heat leak Kapton substrate is 12% of materials cost and very small (<5%) heat leak

Comparison of Quantum Well and Current Thermoelectric Performance

Thermoelectric Module Material	Temperature Difference °C	Voltage at Maximum Power	Maximum Efficiency %	Maximum Power W
N & P-type bulk Bi ₂ Te ₃	200	1.6	5.8	14
	Hi-Z's Commercial Alloys			
N type Si/SiC & P-type B_4C/B_9C Quantum Well Kapton substrate 25 μ m thick	200	10.0	17	60
	250	12.4	20.9	72
	Under Development			
N type Si/SiC and P-type B_4C/B_9C Quantum Well SiGe Substrate ~5µm thick (too hot for Kapton)	450	22.6	32.5	338
	Under Development			

Predicted Efficiency of Quantum Well Thermoelectric Module

Efficiency >50% Carnot at higher temperatures

- N-Type Si/SiC & Ptype B₄C/B₉C
- Cold side at 50°C
- Based on measured α
 & ρ, and literature κ
 (bulk thermal conductivity)
- Efficiencies compete with gasoline & diesel engines, & fuel cells.

Hi-Z Quantum Well Thermoelectric Module and Heat Exchanger

50 Watt Quantum Well Thermoelectric Module $T_H 300^{\circ}C T_C 100^{\circ}C$

Heat Exchanger

Kapton substrate for quantum well films forms module in place of eggcrate design Quantum well efficiency 15% versus 5% Bi₂Te₃ Module size 6.3 x 6.3 x 1.0 cm

Pressure contact Heat showing 2 of 49 couples Flow 200 psi compressive load HOT SIDE Ag or Ni Fe or Mo Eggcrate N N P P Mo or Ni COLD SIDE Metallization Metal Felt or Foam acts as a compliant Electrical member Insulator Al₂O₃ (0.010^{--})

Funneled Heat Flux Module

Increases power & reduces amount of QW material

Method to match module resistance with heat flux of hot and cold sides while increasing power putput

Predicted Power of Quantum Well Thermoelectric Module

Radiation coupling is practical design for high temperature;

conduction or convection higher power

- N-Type Si/SiC & P-type B₄C/B₉C
- Cold side at 50°C
- Module is 2.5 x 2.5 in.
 - Thickness changed to match heat flux from source
 - Conduction
 - Convection
 - Radiation
- Based on measured α & ρ, and literature κ (bulk thermal conductivity)
- Requires high temperature eggcrate

Hi-Z Bi₂Te₃ Thermoelectric Power Generator at 200°C Temperature Difference

Present Technology

Predicted Hi-Z Quantum Well Thermoelectric Power Generator at 200°C Temperature Difference

Under Development

Predicted Hi-Z Quantum Well Thermoelectric Power Generator at 250°C Temperature Difference

Under Development

1 kW_e Thermoelectric Generator Installed in Place of Muffler

Applications of Hi-Z Thermoelctrics

Army Stryker Vehicle

Five kW_e Quantum Well Thermoelectric Generator

Thermoelectric Modules and Assembly with Coolant Heat Exchangers

Under Development

Stryker Vehicle and Underarmor Quantum Well Thermoelectric Generators

THE THOLOGY, INC.

Stryker Vehicle Has Space for Underarmor Quantum Well **Thermoelectric Generators** 15% Efficiency Predicted with two 5 kW_e QW TE Generators Driven by Vehicle Exhaust Exhaust Outlet Ceiling OW TE Generators Exhaust from Engine Floy Flow n/off) Floor (Shelf) (Over wheel) Exhaust from APU Burner Braces Clamps **Under** Armor Space for **APU Burner** to Provide **Quiet QW TE Operation**

Stryker CAT 3126 300 hp Diesel Performance Data Predicted QW TE Generator Power

Predicted Hi-Z Quantum Well Thermoelectric Performance Greater than 42% Carnot Efficiency

- Operating Conditions
 - T_h = 300 °C, T_c = 100 °C
 - Heat Flux = 10 W/cm²
- Quantum well films
 - N-type Si/SiGe
 - P-type B₄C/B₉C
- Kapton substrate
 - Reduces parasitic thermal losses & lowers costs
- Module footprint square with 2.35 in./side
- 64 modules will produce 5 kW_e TE Generator
 - Gas exhaust 5 in. ID
 - QW arranged in 8 in. OD, & 28 in. long generator

New Quantum Well Sputtering Machine at Hi-Z Operational check-out in February 2005

- The new Zero Footprint batch coater has a 34 inch diameter chamber that processes up to six(6) 8 inch wafers or nine(9) 6 inch wafers to increase output by 100x
- Currently depositing QW films on milliwatt radial heat flow sensor power supply
 - 2 inch diameter
 - Radial N QW on oneside and P QW on other side of substrate

Application of Quantum Well Thermoelectrics Price per Watt competitive in several years

- Quantum well raw materials cost less than current materials
 - QW \$0.11/Watt
 - $-Bi_2Te_3 \sim 1.00/Watt$
- Process improvements reduce costs
 - New substrate
 - Increased sputtering area and rate > 40 Å/minute
 - New design with module surrounding substrate
- DOE five year effort on "Cost Effective Fabrication Routes for the Production of Quantum Well Materials for Waste Heat Recovery from Heavy Duty Trucks"
 - UTRC prime with Hi-Z, CAT, & PNNL

